

Chordoma Community Conference 2022

Sacral Surgery: Where Do We Stand?

Nicola Fabbri, MD

Chief Division, Orthopaedic Oncology Professor, Orthopaedic Surgery Department of Orthopaedic Surgery, NYU Langone

University of Bologna Medical School

Orthopaedic Surgery Residency Program Istituto Ortopedico Rizzoli - Bologna

MS Oncology : 1995 Rizzoli

Adult Recon: 1996 Mayo Clinic MS Oncology : 1997 Mayo Clinic

2013 - 2022

Memorial Sloan-Kettering Cancer Center

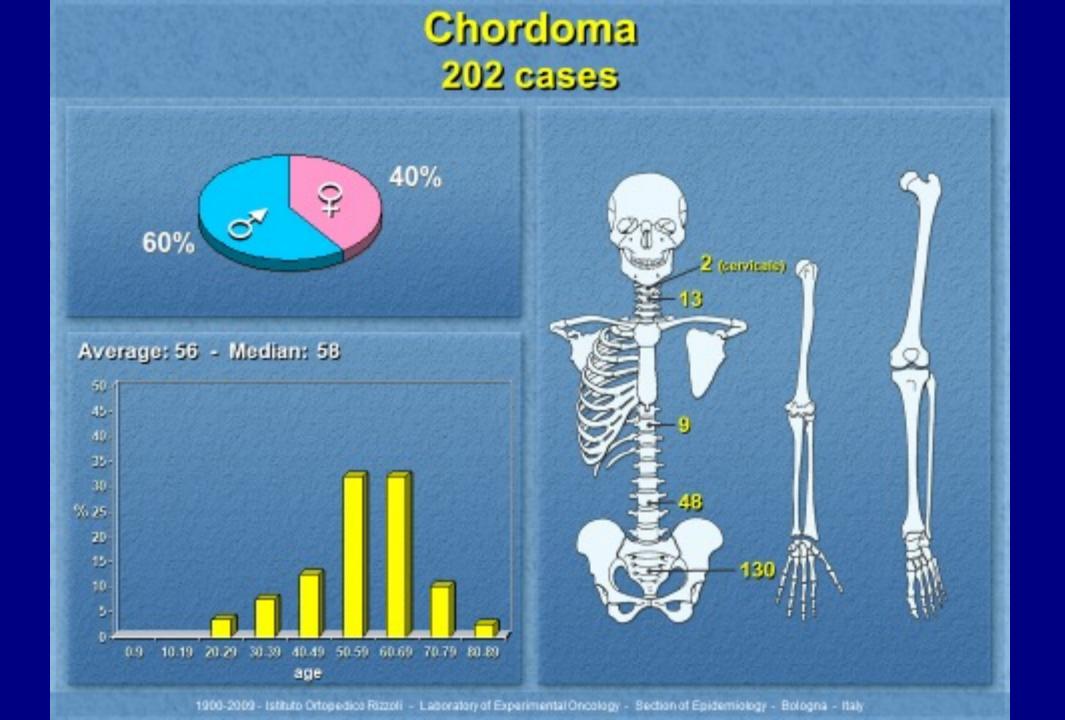
APLISHED

Chordoma Community Conference 2022

Sacral Surgery: Where Do We Stand?

Nicola Fabbri, MD

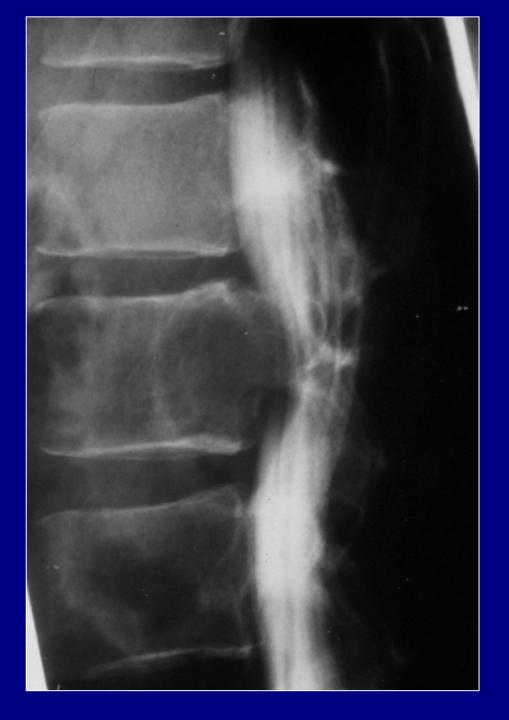
Chief Division, Orthopaedic Oncology Professor, Orthopaedic Surgery Department of Orthopaedic Surgery, NYU Langone

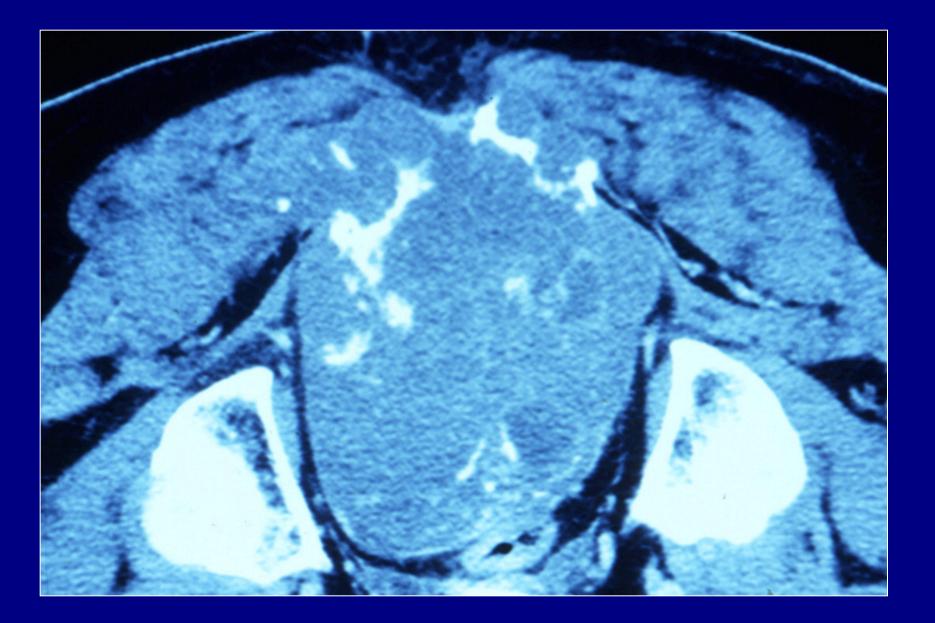


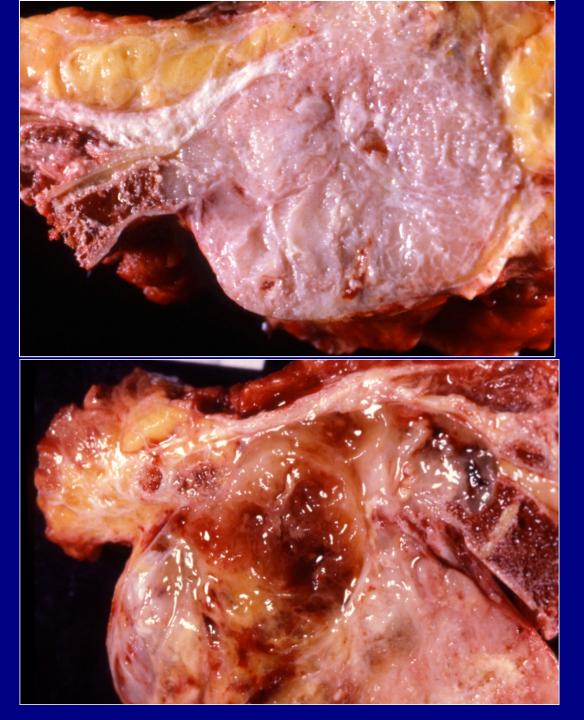
TUMORS OF THE SACRUM

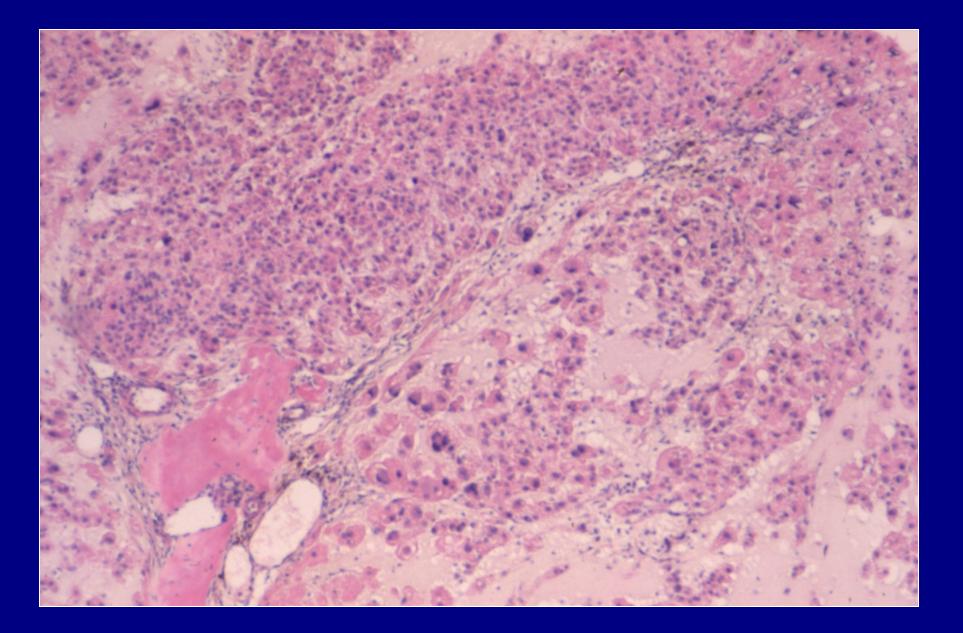
Primitive (on 20000 cases)	663	
Chordoma	362	55%
Giant Cell Tumor	80	12%
 Osteoblastoma 	44	7%
Chondrosarcoma	34	5%
Osteosarcoma	27	4%
Lymphoma	25	4%
Ewing' sarcoma	22	3%
• Myeloma	21	3%
Fibrosarcoma /M.F.Histiocytoma	22	3%

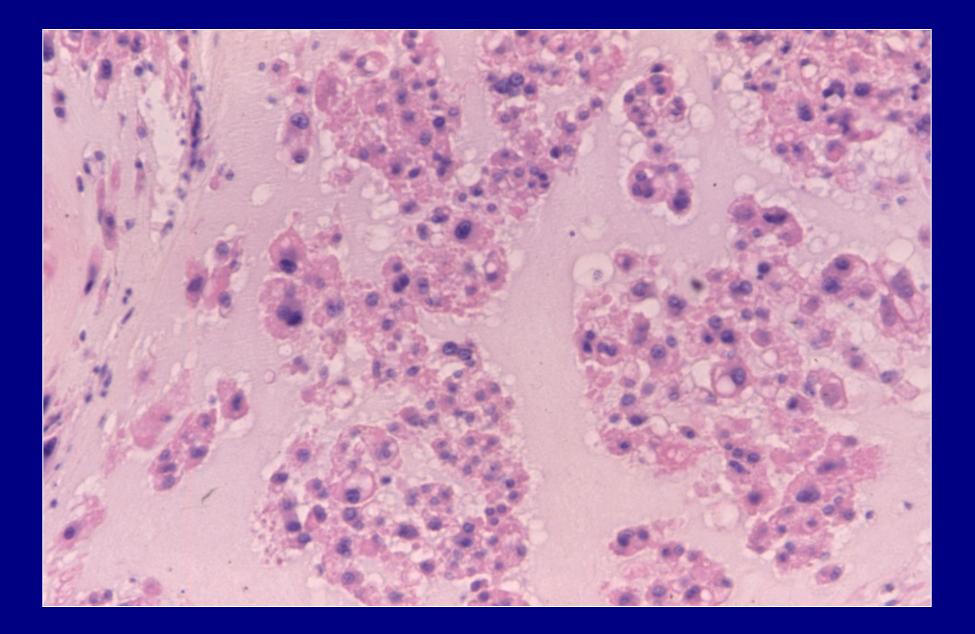
S

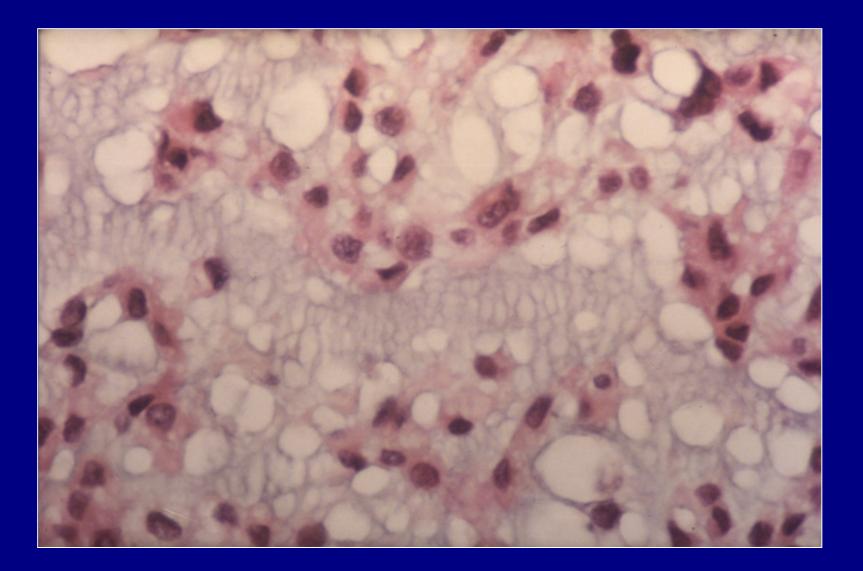


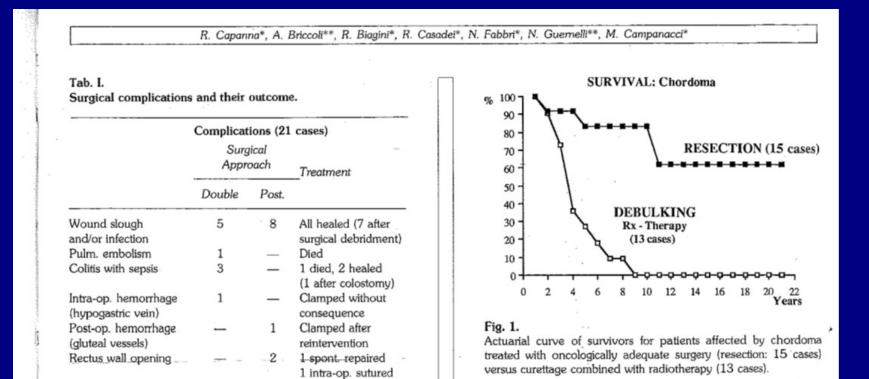





¢





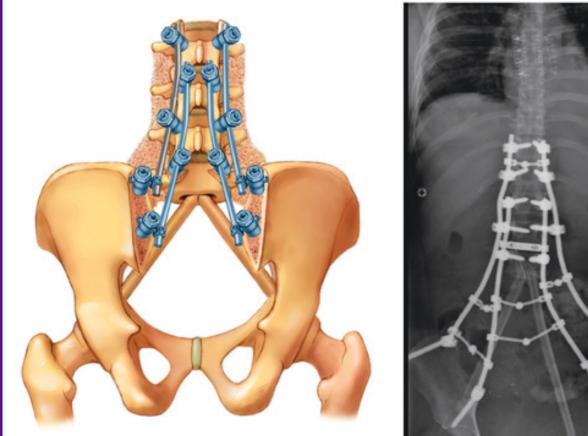


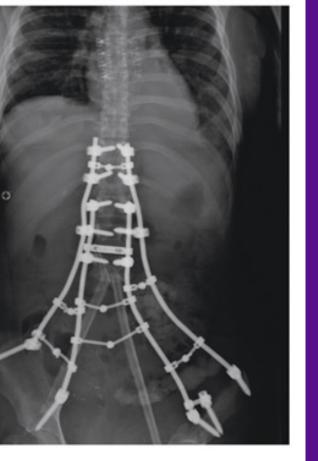
Sacral resections: experience of the I.O.R. bone tumor center

R. Capanna*, A. Briccoli**, R. Biagini*, R. Casadei*, N. Fabbri*, N. Guernelli**, M. Campanacci*

* Clinica Ortopedica dell'Università, Istituto Ortopedico Rizzoli, Bologna, Italy

** Istituto di Patologia Chirurgia, Università, Modena, Italy





Contents lists available at ScienceDirect

European Journal of Surgical Oncology

journal homepage: www.ejso.com

The sacral chordoma margin

S. Radaelli ^{a, *, 1}, P. Fossati ^{b, 1}, S. Stacchiotti ^c, T. Akiyama ^d, J.M. Asencio ^e, S. Bandiera ^f, A. Boglione ^g, P. Boland ^h, S. Bolle ⁱ, Ø. Bruland ^j, A. Brunello ^k, P. Bruzzi ¹, D. Campanacci ^m, F. Cananzi ⁿ, R. Capanna ^o, R. Casadei ^p, A. Cordoba ^q, C. Court ^r, A.P. Dei Tos ^{s, t}, T.F. DeLaney ^u, A. De Paoli ^v, T.M. De Pas ^w, A. Desai ^x, L. Di Brina ^y, D.M. Donati ^p, N. Fabbri ^h, M.R. Fiore ^z, A. Frezza ^c, M. Gambarotti ^{aa}, A. Gasbarrini ^f, P. Georg ^b, G. Grignani ^{ab}, N. Hindi ^{ac}, E.B. Hug ^b, R. Jones ^{ad}, A. Kawai ^{ae}, A.D. Krol ^{af}, F. Le Grange ^{ag}, A. Luzzati ^{ah}, G. Marquina ^{ai}, J.A. Martin-Benlloch ^{aj}, K. Mazzocco ^{ak}, F. Navarria ^v, P. Navarria ^y, P.D. Parchi ^o, S. Patel ^{al}, E. Pennacchioli ^{am}, M.G. Petrongari ^{an}, P. Picci ^{ao}, R. Pollock ^{ap}, L. Porcu ^{aq}, V. Quagliuolo ^o, C. Sangalli ^{ar}, S. Scheipl ^{as}, G.M. Scotto ^{ai}, M. Spalek ^{at}, T. Steinmeier ^{au}, B. Timmermann ^{av}, A. Trama ^{aw}, M. Uhl ^{ax}, C. Valverde ^{ay}, P.P. Varga ^{az}, R. Verges ^{ba}, D.C. Weber ^{bb}, C. Zoccali ^{bc}, P.G. Casali ^{c, bd}, J. Sommer ^{be}, A. Gronchi ^a

Table 1

Series of sacral chordoma patients reporting oncologic outcome according to the adequacy of surgical margins. *Data extrapolated from KM curves on available information.

Series Y	Year	No. Pts	s Median FU (years)	Margin status %	RO				R1			
					5-year OS	5-year LR	10-year OS	10-year LR	5-year OS	5-year LR	10-year OS	10-year LR
Bergh P.	2000	30	8.1	R0 = 70 R1 = 14 R2 = 16	90%°*	10%*	95%°*	76%*	50%*	50%*	100%*	100%*
Fuchs B.	2005	52	7.8	R0 = 21 R1/R2 = 31	100%*	5%	100%*	_	25%*	71%	15%*	_
Kayani B.	2015	58	3.8	R0 = 48 R1 = 42 R2 = 10	85%*	36%	38%*	_	50%*	79%	13%*	_
Angelini A.	2015	71	9.5	R0 = 77% R1 = 23%	-	28%*	_	40%*	-	55%*	_	55%*
Ji T.	2017	115	4.9	R0 = 67 R1/R2 = 33	86%	32%	_	_	67%	74%	_	-
Radaelli S.	2016	99	8.7	R0 = 47 R1 = 43 R2 = 10	95%	18%	71%	31%	95%	38%	62%	58%
Yang Y.	2017	157	4.6	R0 = 21 R1 = 39 R2 = 40	_	17%	_	_	_	43%	_	_
Colangeli S.	2018	33	4.4	R0 = 52 R1 = 42 R2 = 6	_	10%*	_	10%*	_	100%*	_	100%*

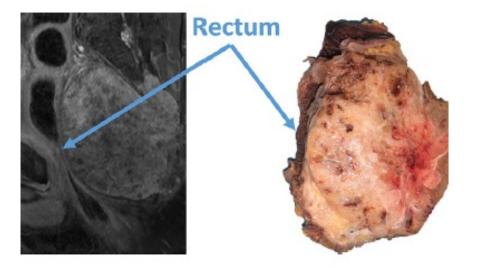
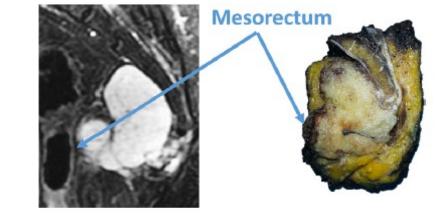



Fig. 1. Neoplastic invasion of the posterior rectal wall. The tumor is therefore resected ¹⁴¹⁸ en-bloc with the sacrum and the rectum.

S. Radaelli et al. / European Journal of S

Fig. 2. The rectum is displaced anteriorly, without being infiltrated, by the sacral chordoma. The surgical dissection may be carried out leaving the whole mesorectum on the specimen with the posterior rectal wall exposed. Thus, the tumor is kept entirely covered achieving an appropriate anterior resection margin.

Radiation Therapy

Table 2

Comparison of oncologic outcomes for sacral chordoma treated with definitive haevy-particles RT. C = carbon ion; P = proton; N = neutron; IMRT = intensity modulated radiation therapy.

Series	Year	No. Pts	Median FU (years)	Therapy	5-year OS	10-year OS	5-year LR	10-year LR
Breteau N.	1998	13	4	N	61% (4yr)	_	44% (4yr)	_
Nishida Y.	2011	7	4.1	С	53%	_	0%	_
McDonald MW.	2013	16	1.9	Р	80% (2 yr)	_	15% (2 yr)	_
Mima M.	2014	23	3.2	C or P	83% (3yr)	_	6% (3 yr)	_
Uhl M.	2015	56	2.1	$C \pm IMRT$	52%	_	21%	_
Imai R.	2016	188	5	С	81%	67%	19%	50%
Kabolizadeh P.	2017	40	4.2	$P \pm IMRT$	82%	_	15%	_
Youn SH.	2018	58	3.5	Р	88%	_	12%	_
Aibe N.	2018	23	3.1	Р	10% (3yr)	_	7% (3yr)	-

Radiation Therapy - GTV, CTV & PTV

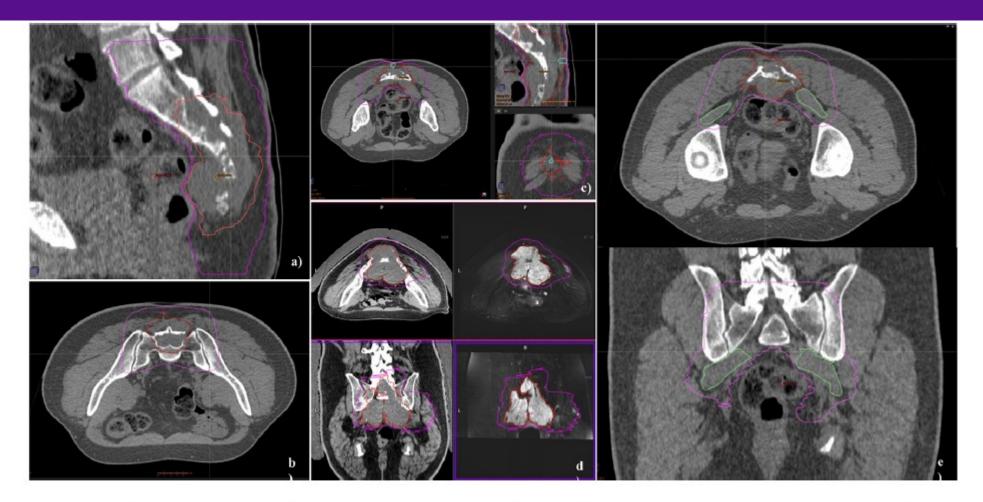
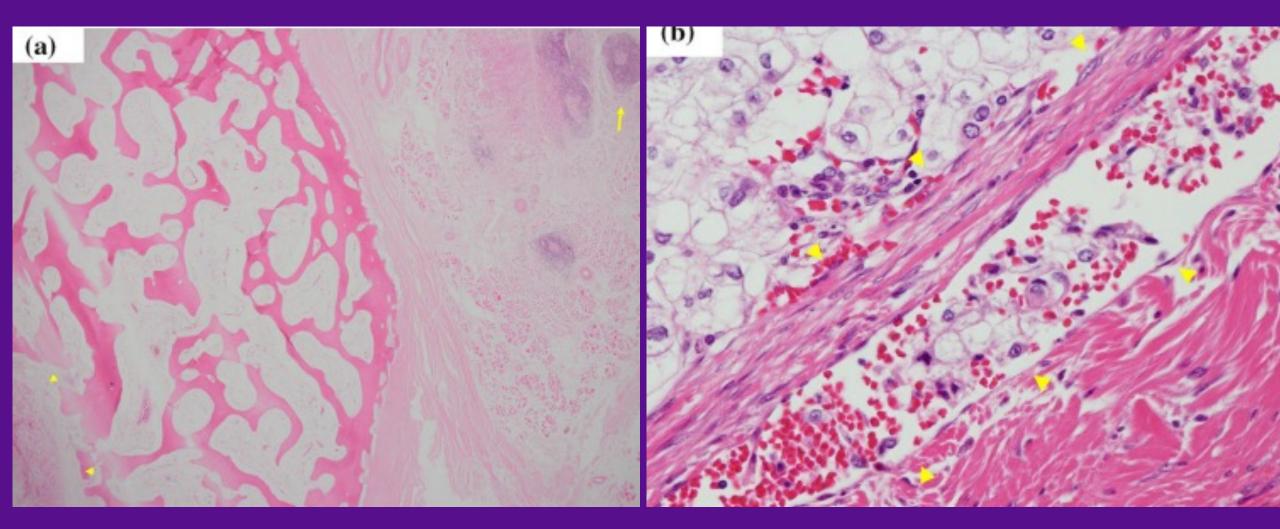


Fig. 3. GTV and CTV contouring of sacral chordoma by CT/MRI scan a) one or two vertebral bodies rostral to the GTV and the whole sacrum caudally should be included b) sacroiliac joint contoured within the CTV c) biopsy tract or surgical scars should be included in the low-dose CTV d) the degree of lateral extension into the gluteal muscles is debatable albeit at least 1.5 cm margin of radiologically normal muscle should be included in the low dose CTV e) both piriform muscles should be entirely included in the CTV.

Ann Surg Oncol (2018) 25:912–919 https://doi.org/10.1245/s10434-017-6268-6

CrossMark

ORIGINAL ARTICLE – BONE AND SOFT TISSUE SARCOMAS


Analysis of the Infiltrative Features of Chordoma: The Relationship Between Micro-Skip Metastasis and Postoperative Outcomes

Toru Akiyama, MD¹, Koichi Ogura, MD^{2,3}, Tabu Gokita, MD, PhD⁴, Satoshi Tsukushi, MD, PhD⁵, Shintaro Iwata, MD, PhD⁶, Tomoki Nakamura, MD, PhD⁷, Akihiko Matsumine, MD, PhD⁷, Tsukasa Yonemoto, MD, PhD⁶, Yoshihiro Nishida, MD, PhD⁸, Kazuo Saita, MD, PhD¹, Akira Kawai, MD, PhD², Seiichi Matsumoto, MD, PhD⁴, and Takehiko Yamaguchi, MD, PhD⁹

¹Department of Orthopaedic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan; ²Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan; ³Department of Orthopaedic Surgery, The University of Tokyo Hospital, Tokyo, Japan; ⁴Department of Orthopedic Surgery, Cancer Institute Hospital, Tokyo, Japan; ⁵Department of Orthopedic Surgery, Aichi Cancer Center Hospital, Aichi, Japan; ⁶Division of Orthopaedic Surgery, Chiba Cancer Center, Chiba, Japan; ⁷Department of Orthopaedic Surgery, Mie University Hospital, Mie, Japan; ⁸Department of Orthopaedic Surgery, Nagoya University Graduate School and School of Medicine, Aichi, Japan; ⁹Department of Pathology, Saitama Medical Center, Dokkyo Medical University, Koshigaya, Japan

CLINICAL ARTICLE

J Neurosurg Spine 32:79-88, 2020

Long-term outcomes of high-dose single-fraction radiosurgery for chordomas of the spine and sacrum

*Chunzi Jenny Jin, MD, MS,¹ John Berry-Candelario, MD, MPH,² Anne S. Reiner, MPH,³ Ilya Laufer, MD, MS,² Daniel S. Higginson, MD,¹ Adam M. Schmitt, MD,¹ Eric Lis, MD,⁴ Ori Barzilai, MD,² Patrick Boland, MD,⁵ Yoshiya Yamada, MD,¹ and Mark H. Bilsky, MD²

Departments of ¹Radiation Oncology, ²Neurosurgery, ³Biostatistics, and ⁴Radiology, and ⁵Division of Orthopedic Surgery, Memorial Sloan Kettering Cancer Center, New York, New York

NS_{SPINE}

Received: 13 July 2020 Revised: 30 August 2020 Accepted: 8 September 2020

DOI: 10.1002/gcc.22895

BRIEF REPORT

WILEY

Poorly differentiated chordoma with whole-genome doubling evolving from a *SMARCB1*-deficient conventional chordoma: A case report

Christian Curcio¹ | Robert Cimera² | Ruth Aryeequaye² | Mamta Rao² | Nicola Fabbri³ | Yanming Zhang² | Meera Hameed²

¹Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, New York

²Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York ³Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York

Abstract

Evolution of poorly differentiated chordoma from conventional chordoma has not been previously reported. We encountered a case of a poorly differentiated chordoma with evidence of whole-genome doubling arising from a *SMARCB1*-deficient conventional chordoma. The tumor presented as a destructive sacral mass in a 43-year-old

 NCCN 2021-22 meeting: considerations for different guidelines than conventional chordoma

Thank You